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Restricted range approximation in uniform norm from an extended Haar space
of a certain order is an important and widely applicable problem in restricted
approximations. In the past 20 years or more, many authors have investigated the
characterization of best approximations in various special cases of restricted range
approximation, which include approximation with interpolatory constraints, one
sided approximation, and copositive approximation. But the characterization in the
general case is still an open question. The paper gives a general characterization
theorem in the form of convex hull and alternation. Many known important results
are exactly its special cases. © 1992 Academic Press, Inc.

1. INTRODUCTION

Let [a, b] be a finite interval and f![ c [a, b] a compact set containing
at least n + 1 points. By C(f![) we denote the normed linear space consisting
of all the continuous real valued functions defined on f![, with the uniform
norm 11·11. If <Pn= span(q», ..., q>n) is an n-dimensional extended Haar
subspace of order r (1 ~ r ~ n) on [a, b], that is, {q> h"" q>n} C C( [a, b]) is
an extended Chebyshev system of order r on [a, b] (see the definition in
[ 1], Chap. 1, Sect. 2), then we call

K = {q E <Pn : l(x) ~ q(x) ~ u(x), x E [a, b] }

the .set of generalized polynomials having restricted ranges, where I
and u are extended real valued functions defined on [a, b] satisfying
- 00 ~ l(x) ~ u(x) ~ + 00. Given IE C(f![)\K, the problem of approxi
mating I by K is important and widely applicable because many standard
restricted approximations investigated by many authors are special cases
of it. Indeed, if we set l(x) and u(x) properly, we may get interpolatory
constrained approximation which has been studied by, for example,
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F. Deutsch [2], one-sided approximation (see [3, Chap. 3, Sect. 8]) con
taining a special case of positive approximation, copositive approximation
which has been studied in [4-6], etc.

On the characterization of best approximations with restricted ranges,
G. D. Taylor [7] gave in 1969 a theorem in the form of convex hull and
alternation under a hypothesis of l(x)<u(x), xE[a,b], and a certain
continuous condition on I and u. And his investigation in [8] allows
l(x;) = u(x i ) at some nodes Xi' but it is required that I and u have special
local Taylor expansions in a neighbourhood of each Xi' Latterly,
W. Sippel [9] also considered the equality case with the assumptions
that I and u are continuous on [a, b] and have continuous derivatives of
sufficiently high order in a neighbourhood of each Xi' as well as some other
constraints on f Clearly, the condition in [7-9] are so strong that in
general the results are not applicable to many standard constraints
including approximation with interpolatory constraints, one-sided approxi
mation (by the set {q E cP n : q(x) ~ l(x)} with I not necessarily continuous),
and copositive approximation. Moreover, in 1980, Y. K. Shih [10]
investigated the problem with a different assumption that l(x) + d~ l(x;) ~
u(x)-d(d~O) in a certain deleted neighbourhood of each node Xi' This
is still a special case of approximation by K which cannot contain the
results in [8] and [9], and cannot be applied to copositive approximation.

In brief, though progress has been achieved in approximation with
restricted ranges in the past 20 years or more, the characterization theorem
in the general case is still an open question. To solve the problem at last,
this paper gives a theorem in the form of convex hull and alternation,
which contains all the results in [7-10] on characterization as well as that
of [4-6].

2. NOTATIONS AND MAIN RESULTS

Given p E K. Since in the case K = {p} the problem of characterization
is trivial, we always assume that

K\{p}#0. (1)

Based on the definition of the extended Chebyshev system of order r,
each q E cP n has a continuous derivative of order r - 1. We call X E [a, b] a
zero of order t (0 ~ t ~ r) of q if q(O)(x) = ... = q(t-l)(X) = 0, and q(t)(x) # 0
when t < r. It is clear that for q $. 0 there exist at most n - 1 zeros on
[a, b] (counting multiplicities).

We first introduce some needed notations. Let
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and define d(p(x), u) similarly. We call

X* = {x E [a, b] : d(p(x), I) = d(p(x), u) = 0}
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the set of nodes of K. Provided x E [a, b), by '1,1 (x) we denote the largest
positive integer t subject to

(2)

and if the above equality holds or does not hold for any positive integer t,
then let, I, dx) equal + IX) or 0, respectively. Similarly we define, I, _ dx)
by the equality

(3)

Substituting x-O for x+O in (2) and (3) we define '-I,dx) and '-I.-dx)
for x E (a, b]. Let

( )
={'I',v(X)+ 1, if XEX*, and 'l';v(x)=O

tl'V x )
, 'I', v (x , otherwise,

t+ (x)=min{tl,dx), tl._dx)};

t _ (x) = min {L1,dx), t -I, -I (x)};

{

max{t+(x),t_(X)}, if xE(a,b),

t±(x)f't+(x), if x=a,

t_(x), if x=b;

w = w(x) = (-1r±(X);

and

or r,
{l,v=±1;

{

t±(X)+1,

t(x) =

t ± (x),

if there exists v such that

t I. v (x), t -I, -mv (x) > t ± (x),

otherwise.

(4)

Then it is easy to check that

{
t(X) ~ 1,
t(x) = 0,

if XEX*,

if XE [a, b]\X*.
(5)
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Write

and

where
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{

X+ = {XEq-:f(X)-p(X) = Ilf-pll},
X_ = {xEq":f(x)-p(x)= -llf-pll},

x=x+ux_,

X,= {XE [a, b]: d(p(x), l)=0},

X u = {XE [a, b]: d(p(x), u)=O}.

Clearly, both X, and Xu are closed sets because p is continuous. For
XEXUX', let

and for x E X*, let

{
1,

a(x) = -1,
XEX + uX~,

XEX_ uX,-,

{

- v( -1)()' - 1)I(X)/2,

a(x) = if there exist J.l" v such that t)', v (x) > t(x),

0, otherwise

(6)

(by the definition of t(x) it is not difficult to check that a(x) is a single
valued function on X*). Moreover, write

X~ = {XEX*: a(x)= 1},

X~ = {x E X* : a(x) = - 1},

DEFINITION. xl> ..., X m are said to be m alternating points of p with
respect tofand I, u, if a~xl < ... <xm~b, each X;EXUX'UX", and

where

i=2, ..., m,

r(x) =
eE[a.x]r.X·

t(~).
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T = max {t(X) : x E [a, b] } .
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Provided T ~ rand t(x) < r, x E X", we call t(x) the order of quasi-touch of
I and u at x, and T the order of quasi-touch of I and u on [a, b] (in the next
section we see that the values of t(x) and T are in fact independent of the
choice of p E K). And by (15) below we find that when (1) holds
LXEX* t(x) < n (and thus X* is a finite set). So if we let

'P= {qE(/>n: q(O)(x) = ... = q(t(x)-I)(X) =0, XEX*},

np=n- L t(x),
XEX·

then the dimension of the subspace 'P is np and we can denote by tPl' ..., tP n
p

a basis of 'P.

Now, if

(X+ (\ Xu) u (X _ (\ X,) =I- 0, (7)

then p is clearly a best approximation to f from K. Otherwise, we have the
following

CHARACTERIZATION THEOREM. Assume that :r c [a, b] is a compact set
consisting of at least n + 1 points, (/>n is an extended Haar space of order
r(1~r~n) on [a,b], and PEKc(/>n, where K is a set 'of generalized
polynomials having restricted ranges with T ~ rand t(x) < r, x E X". If
K\ {p} =I- 0, fE q£r)\K, and (7) is false, then the following statements are
equivalent:

(i) p is a best approximation to f from K;

(ii) the origin of the subspace 'P belongs to the convex hull of the set
{u(x)(tP~t(x))(x), ..., tP~:(X»(x)): x EX U X' U X"};

(iii) there exist on [a, b] at least np + 1 alternating points of p with
respect to f and I, u.

Note 1. The Characterization Theorem is a general one with very weak
assumptions. All of the results on characterization in [7-10] are special
cases of it. In fact, the result of [7] is only a special case of Theorem 3.2
in [10] with the set of nodes being empty. However, if we apply the
Characterization Theorem in the situation of [10], it follows that t(x) = 0,
X E X U X'; t(x) = 1, X E X*; T = r = 1; and X" =0. So (ii) of the
Characterization Theorem becomes 0 E co( {u(x)( tP d x), ..., tPn

p
(x)) :

x E X U X'}), which is exactly (b) of Theorem 3.2 in [10], and (iii)
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becomes there exist n + 1 points ~ 1 < ... < ~n+ 1 in X u X' u X* such that
a(~j)=(-1)j+la(~d, J=2, ...,n+1 holds if we reset a(~j)=1 or -1
properly for each ~j E X*, which is just (c) of Theorem 3.2. And under the
conditions of Theorem 1 in [8], it follows that t(x)=O, XEXUX', and
X" = 0 again. Then (ii) is exactly (b) there. Since np and (-1 r(Xi) are just
n-m and (_l)rnn(x;) in [8], respectively, (iii) coincide with (c) there.
Moreover, under the hypotheses of the alternation theorem in [9], it is
easy to check that for each Xi E X*, t(x;) is even and hence r(x;) == 1. So (iii)
becomes there exist Xo < Xl < ... < Xn in [a, b] which are elements of

p

X + u X~ u X: and X _ u X'-- u X~ alternately. This is exactly the alterna-
tion criterion given by [9].

Note 2. The Characterization Theorem is applicable to many standard
restricted approximations including interpolatory constrained approxima
tion, one-sided approximation, and copositive approximation. It is worth
while to describe the copositive case in detail. First, in 1977 Passow and
Taylor [4] developed a characterization in the form of convex hull and
alternation under some strong conditions; second Y. K. Shih [5] gave a
criterion for p to be a best copositive approximation provided that
p'(x;) =F 0 at each point Xi where f(x) alters its signs; at last, in 1988
1. Zhong [6] solved the general case removing Shih's additional con
dition. However, when we apply the Characterization Theorem in the
situation we find easily that t(x) = 0, X E Xu X' and t(x) = 1, X E X*. Then
(ii) has the form of OEco({a(x) (t/!l((X), ...,t/!np(X»:XEXUX' }U
{a(x)(t/!;(x), ...,t/!~p(X»:XEX"}), which is just the convex hull criterion
given by [6]. In addition, it is not difficult to rewrite uniformly the concept
of alternating k times on k intervals given by [6] as k + 1 alternating
points. Then the alternation criterion in [6] coincides with (iii) here.

3. LEMMAS

For q E (/In and x E (a, b), we can find a positive number (j small enough
such that q is sign-preserving in the right (j-neighbourhood and the left
(j-neighbourhood of x. So we can define

{
R(X, q) = sgn q(~),

L(x, q) = sgn q(~),

X< ~ <x+(j,
x-(j < ~ <x,

which are called the right-sign and left-sign of q at x, respectively. Write
them as R(x), L(x) or R, L briefly when this will not lead to misunder
standing. Similarly we can define R =R(a) =R(a, q) and L =L(b) =L(b, q).
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Obviously, if x is a t-fold zero of q with t < r, then by Taylor's formula we
can get

L(x)=(-IY R(x).

We call x a singular zero of q if x E (a, b) is an r-fold zero of q and

L(x)= -(-I)' R(x).

LEMMA 1. Assume x E X* is a zero of order t of q E (/J no

(i) If 1~ t < r, then there exists a positive number Ao such that

(8)

l(~) ~p(O + Aq(~) ~ u(O, (9)

holds in a certain right neighbourhood and left neighbourhood ofx if and only

if

and

respectively, where R = R(x, q), L = L(x, q).

(ii) If t~t(x), and t(x)<r and u(x) q(I(X))(X) >0 when XEX", then
there exists a Ao > 0 such that (9) holds in a certain neighbourhood of x.

Proof (i) We prove the lemma only in a right neighbourhood of x; the
proof in the other case is similar.

Sufficiency. Assume that R= 1. Based on the definition of ' I,dx),
there exist positive numbers Band fJ < 1 such that for any ~ E (x, X + fJ) we
have

u(~) - p(~) ~ B I~ - X l'I.Jlx).

And it might be assumed that

q(~) > 0, X E (x, X + fJ).

By Taylor's formula,

q(~) = ~ q(t)(f)(~ - xy, (10)

Then from the continuity of q(l) and 'I,dx) ~ tl,l (x) ~ t there exists a
Ao > 0 such that for any 0 < A. < .,1,0 we have

V~E(X, x+fJ).

So (9) holds in (x, x + fJ).
In the case R = -1, it can be proved analogously.
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Note. The conclusion is still true if t = r. Indeed, in the case R = 1,
by the fact that ! 1,1 (x) = r implies t I, dx) > r = t we can get ! 1,1 (x) ~
r-1 = t-1. So substituting (10) by

q(O=_l_ q(t-l)(~')(~_X)'-1
(t-1)! '

x<~' < ~

we can prove (9) for ~ E (x, X + <5) in the same way.

Necessity. Let tl,R(X) > t. By the definition of tl,R(X) it is easy to
check that

(11)

For any right neighbourhood of x, there must be a subinterval (x, x + <5)
such that q(~) preserves the same sign in (x, x + <5) and

1f= min ~lq(t)(~I)I>O.
e' E (x, x + b) t!

So by (10) we have

Vx<~<x+<5, (12)

If R= 1, then for any A>O by the definition of !I,I(X) there exists
~ 1 E (x, X + <5) such that

u(~d-p(~d<A1f1~I_xlrl.t<x)-I.

Combined with (11) and (12) we have

So (9) is false for any Ao > 0 and any right neighbourhood of x. The proof
in the case R = - 1 is similar.

(ii) Presume that x E (a, b) (it can be proved similarly if x = a or b).
If x E X", then by u(x) = 0 and (6) we have

tl,R(X), t -"dx) ~ t(x), (13 )

(14 )

And from (i) and the note in its proof of sufficiency we get the conclusion
needed.

Now assume that x E X". Then u(x) q(I(X»(X) > 0 and t = t(x) < r. In the
case t(x) = t ± (x), we have

R = sgn q(I(X»(X) = u(x) = -VW(I'-I)f2,

L = (_l)'(x) R = -vw(l'+ 1)/2
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t1'. v(x) > t(x).

If J1. = 1, then by the definition of t ± (x) and t(x) it follows that

t l. _v(x), t_I._wv(X)~t(x).

So we can get (13) from (14). If J1.= -1, we can get (13) just the same.
If t(x) = t ± (x) + 1, then there exists v such that

tl,v(x), t -1,-wv(X) > t ± (x).

So by the definition of t ± (x) we have

tl._v(x), t_l.wv(X)~t±(x)<t(x),

and hence the condition in (6) is

tl,v(x) > t(x) or t -I. -wv(x) > t(x).

In both cases, similar to (14) it follows that

R= -v

Then (13) holds again.

The lemma is proved.

and L=wv.

LEMMA 2. Assume that T ~ rand t(x) < r, x E X". IfP + q E K, then

and

XEX*, (15)

a(x) q(I(X))(X) ~ 0, XEX'UX". (16)

Proof If there exists x E X' for which (16) does not hold, then from (5)
we get t(x) = 0 and by the definition of a(x) it follows that p + q EK. This
is impossible.

If there exists x E X* for which (15) does not hold, then there exists a
positive integer t < t(x) such that x is a zero of order t of q. By the defini
tion of t ± (x), we can find a J1. such that

tl'.dx), tl', _dx) ~ t ± (x).

On the basis of Lemma 1(i), we have t1', dx) ~ t or t1', _ dx) ~ t because
p+qEK and K is a convex set. So t~t±(x), and by (4) we have
t(x)=t+l=t±(x)+1 and

t l,v (x), t -I, -wv(x) > t ± (x).
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Hence tl,R(X»t if v=R, and t_l,wR(X)=t_I,L(X»t if v= -R, Then
from Lemma l(i) it follows that p + q E K again,

Now suppose there exists x E X" for which (15) holds but (16) does not.
Then x is a zero of order t(x) < r of q, If in (6) tl,v(x) > t(x) holds,
then v= -a(x)=R and tl,R(X»t(x), and if t_l,v(x»t(x) then
v= - (-1 y(x) a(x) = Land t -1,L(X) > t(x), Hence we have p + q E K again
by Lemma 1(i),

The lemma is established,

LEMMA 3, Ifa=xl<x2< "'<Xk_I<Xk=b(k~2),r=L~~lti~n-l

with O~ti~r, and

n - 1- r is even, (17)

then there exists a q E (/Jn such that Xi is its zero of order t i (i = 1, "', k) and

(-1)'1+ ... +'i q(x»O,

Proof Write

_ [n-l-rJ
ko- 2 '

XE (Xi' Xi+ l ), i= 1, "', k-l.

to = n -1- r - 2ko,

By the hypotheses it is easy to check that tj + to ~ r, j = 1, k, Let Xl and X k

be two arbitrary subsets of [a,b]\{xJ~=1 each consisting of k o points,
and Xl (\ X k = 0, On the basis of the definition of an extended Chebyshev
system and Theorem 5.2 in [1, Chap, 1], for j = 1 and k we can find qj E (/In

for which Xi (i =1= j) is its t,fold zero, tj is its tj + to-fold zero, and each point
of Xj is its 2-fold zero (or nonnodal zero if r = 1), Then multiplied by - 1
if necessary (denoted by qj still) it follows that

Now q = ql + qk meets the requirements of the lemma,

LEMMA 4, Assume that q E (/In has a total of r = L~= I t i zeros counting
multiplicities, and Xi is its zero of order t i~ 1, i = 1, "., k. If by III we denote
the number of the elements of the set

1:= {i : Xi is a singular zero of q},

then

r+III~n-l.

Proof It is sufficient to give a proof provided III > O. Let

10 = {i: Xi E (a, b), t i = r },

(18)
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By Lemma 3 we can make a generalized polynomial ql such that X;

(i E Iu Io) is its zero of order r -1, x;(i E Iu Io) is its zero of order t;, and
q1 has the same signs as q on [a, b] \ {X;: i E I u Io}. Thus, q;. = q - A.q I 1= 0
has at least r - 1II - 1I o1zeros. Take a «5 > 0 sufficiently small so that

(Xj-«5,xj+«5)n({x;}~~lu{a,b})={xJ, j=I, ...,k.

For xj,jEI or xj=a,jE/o, we have

sgn q;. (xj + «5) = sgn q(xj + «5)

if A. > 0 is sufficiently small. Since for any I] > 0 we have

r-l
q;.(xj+I])= (rl]-I)! [q(r-I)(O-A.q~I-I)(O],

therefore q(r-Il(Xj)=0 and q~r-I)(Xj)#O imply

sgn q;.(xj + 1]) = -sgn q(xj + 1])

if 1]<<<5 is sufficiently small. So there exists a zero of q;. in (xj+l], xj +«5).
In the same manner, for xj , j E I or xj = b, j E Io, we can find 0 < 1]' < «5 such
that there exists a zero of q;. in (xj -«5, Xj_I]'). Thus, if A. is sufficiently
small, then q;. has at least (r-III-IIol)+2III+IIol=r+III zeros,
which implies (18).

LEMMA 5. Assume T~ rand t(x) < r, x E X". Then

(i) there exists a qo E l/J n such that each x E X* is its zero of order t(x),
and

a(x) q~(x» (x) > 0, VXEX'UX"; (19)

(ii) for qoEl/Jn , if each XEX* is its zero of order at least t(x), and
(19) holds, then there exists A.o>O such that p+A.qoEK, O<A.~A.o.

Proof (i) On the basis of (1), we can find a q 1= 0 such that p + q E K.
Assume that the zeros of q in X' are x I> ••• , X;I; the zeros in X* are
X;1 + I> •••, X;2 (clearly {x;} :2=;1 + I = X*); and the zeros which do not belong
to the set X' u x* are X;2 + I' ... , X;3. And assume each X; is a zero of order
t;~I, i=I, ...,i3 •

Write the right-sign and left-sign of q at x; as R;=R(x;, q) and
L; =L(x;, q), respectively (note that only one of them is defined if x; =a or
b). By Po we denote the minimum of the distance between any two different
points in {a, b} u {x;} :3= I. And we define I and Io the same as in Lemma 4.

In which follows, we choose t; (i = 1, ..., i3 ) points (at most r
points are coincident with each other) in a certain closed interval
F; c [x; - Po/3, x; +Po/3] with t; satisfying
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{

t j - t; = nonnegative integer,

t j - t; = nonnegative even integer,

t j + 1- t; = nonnegative even integer,

if x j E (a, b),

if x j E (a, b) and i E I,

if XjE (a, b) and iEI.

(20)

Since Lemma 4 implies L;J= 1 t; ~ n - 1, according to Lemma 3 we can find
a qo with these L;3= 1 t; zeros chosen (if a or b is selected to be a zero of
order r, we add a single zero if necessary so that (17) holds). Then we
prove that qo satisfies the requirement of the lemma.

For 1~i~il' if XjEX~ (or X'-), let pj be the distance between Xj and
the closed set Xu(or Xl) (if Xu (or Xl) is empty, let pj= + (0). Writing

p = min {Pj: i = 0,1, ..., id,

we have P > O. And if Xj = a or b, we define L j = R j or R j = L j in addition.
Let

[Xj-~' Xj+~J n [a, b], if Lj=Rj and Rju(x;) < 0,

{x;}, if Lj=Rj and Rju(x;) > 0,

Fj =
[Xj,Xj+~l and

(21 )
if L j =1= R j Rju(x;) <0,

[Xj-~,xJ if L j =1= R j and Rju(x;) > O.

By t; we denote the number of the endpoints of F j not being Xj' It is easy
to check that t; satisfies (20). And from the definition of p we can see that

u(X) = u(x;), 'VXEX' nFj • (22)

[X j - p', x j +pi],

if Rj=-u(x;) and L j=-(-IY(X;)u(x j),

[Xj, Xj + pi],

if Rj=-u(x;), and xj=a or L j =(-ly<-<i)u(x;),

Fj = [xj-p',Xj], (23)

if L l = - ( -1 Y(Xi) u(x;), and Xj = b or R j = u(xj),

[Xj, Xj + p'],

if u(x;) = 0, L j =1= ( -1 )I(xil R j ,

{ x j }, otherwise,
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where pi < Po/3 is a positive number such that
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X' nFi =0, (24)

The existence of pi can be proved as follows. For fixed i E {i1 + 1, "', i2 }, if
u(x)#O then by the hypothesis we can get t(x;}<r and find a generalized
polynomial q having a zero of order t(x;} at Xj such that u(x;} q(I(Xi»(X;}
> O. According to Lemma 1(ii), there exist A> 0 and pi> 0 such that

l(x) ~p(x)+ Aq(X) ~ u(x), vXE [Xi - pi, Xi + p'] n [a, b].

In the first and second cases of (23), when pi < Po/3 is suficiently small,
we have

sgn [Aq(X)] = R(xj> q) = sgn q(t(Xi))(X;) = u(x;} = - R; = -sgn q(x),

VXE (Xi' Xi + pi] n [a, b].

And in the first and third cases

sgn [Aq(x)] =L(x j , q) = (- I)I(Xi) sgn q(I(X;))(X;} = (_ly(x;) u(x;}

= -Lj = -sgn q(x), VXE [x i - pi, x;} n [a, b].

Then in cases 1-3, for any x # Xj in Fj from l(x) ~p(x)+q(x) ~ u(x) we
can get d(p(x), I) > 0 and d(p(x), u) > O. So (24) holds. And under the
conditions in the fourth case of (23) we can prove similarly that
X' n Fi = 0 provided q has a zero of order t(x i) at Xj and - RiR(xj , q) > O.

Note. In fact, if u(x;} = 0, which is a part of the conditions of the fourth
case only, a similar argument leads to the fact that, for Fj = [Xj, X j +pi] (if
Xi # b) or F i = [X i - pi, x;] (if Xi # a) it still follows that Fi n X' =0 (in the
latter case it is required that - LiL(xj , q) > 0).

Let t; be the sum of t(x;) and the number of the endpoints of F j not
being Xj' Let us prove that t; satisfies (20). Before all, by Lemma 2 we have

(25)

In the first case of (23), clearly xiE(a, b) and L i =(-I)I(xi) Ri . (a) If iE/,
then by

(26)

and (25) we see that t i - t(x;} is a positive odd number. So the third
expression of (20) holds. (b) If i E/, then t i - t(x i ) is a nonnegative even
number because (26) is false. Provided t i = t(x;), by u(x;) # 0 we get t j < r.
If t1.v(x;} > t(x;) holds in (6), then v= -u(x;) and tt,Ri(X;) > t i , and by



206 SHU-SHENG XU

Lemma 1(i) we get p + q EK; if t -l,v(X;) > t(xj, then v = - (-1 )'(Xi) u(xj
and t -l,Li(X;) > t;, and we get a contradiction again. Thus the second
expression of (20) holds. In the second to fourth cases of (23), if x E (a, b),
by L i # ( _l)I(Xi) Ri it can be found that t i - t(x i) is a nonnegative even
number or a positive odd number if i E I or i E I respectively. So we get the
third or second expression of (20). If Xi = a or b, we can find a contradic
tion similar to (b) in the first case provided t i - t(x i) = O. thus we get the
first expression of (20). In the fifth case, (25) implies the first expression of
(20) if Xi E (a, b); and if Xi E (a, b), by L i = (-1 )'(X;) Ri the second or third
expression of (20) can be gotten.

Again, for i z < i ~ i 3 , let

Clearly we have

X'nF;=0, (27)

Let t; = t i - 1 if i EIu /0 and t; = t i if i E Iu /0; then (20) holds.
Now, according to Lemma 3, we make a generalized polynomial qo

having L:3= 1 t; zeros such that the endpoints of Fi not being Xi are its single
zeros, each point in {Xi} :2~ it +1= X* is its zero of order t(x i), and Xi
(i = i2 + 1, ..., i3 ) is its zero of order t;. In doing this, (17) is provided as it
should be. Otherwise, n - 1- L:3~ 1 t; is odd and a or b is selected to be an
r-fold zero, Since by the selection of the zeros there exists an Xi = a or b
such that Xi E X* and t(x;) = r, we have Xi E X", which means u(xj = 0, and
Fi = {Xi} by (23). So if we reset

F= {[Xi' Xi + p'],
, [X i - p', X;],

if xi=a,

if xi=b

with (24) remaining true because of the Note below the proof of (24), then
n - 1- L:3= 1 t; becomes a nonnegative even number and we can get qo by
Lemma 3. By the definition of F; and t;, we see that qo (multiplied by -1
if necessary) has the same signs as q on [a, b]\(U:3~ 1 FJ From Lemma 2
we see that u(x) q(I(X»(X) > 0, XE X'\(U:3= 1 FJ SO by t(x) = 0 we get

u(X) q~(x» (x) > 0,

By (23), our selection of the zeros ensures that, for X E X" R(x, qo) = u(x)
(or L(x,qo)=(-I)'(X)u(x) if x=b). So

XEX".
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In addition, if x E Fi , 1~ i ~ i1 , according to (21) and the construction of
qo, it can be found that

a(x;)[qo(X) - q(x)] > O.

So when x E X' n F i , from (22) and Lemma 2 we have

a(x) q~(x» (x) > (j(x) q(x) ~ O.

Considering (24) and (27), the conclusion of (i) is gotten.

(ii) By O(S, <5) we denote a <5-neighbourhood of a set SC [a, b].
From Lemma l(ii), there exist <5 1 >0 and A1 >0 such that for any
0<A<A1 and XEO(X*;<5tl we have

lex) ~p(x)+Aqo(X) ~ u(x). (28)

By <5'(or <5") we denote the distance between the closed sets X~ \O(X*; <5tl
and Xu(or X'- \O(X*; <5tl and X.). Then both <5' and <5" are positive. In
addition, since a(x)qo(x»O for any XEX'\O(X*;<5tl, then <5*, the dis
tance between X'\O(X*; <5tl and the set of the zeros of qo is also positive.
Letting <5 2 = min {<5'/2, <5"/2, <5*}, because for any x E O(X~ \ O(X*; <5tl; <5 2 )

we have qo(x»O, therefore

l(x) < p(x) + Aqo (x),

and

u(x) - p(x) ~ inf d(p(~), u)
ee [a, b]\O(Xu; 02)

(29)

since x E O(Xu ; <5 2 ), On account of the infimum in (29) being a positive
constant, (28) holds for A sufficiently small. Discussing similarly
XEO(X'- \O(X*; <5d; <5 2 ) we can find a positive number ..1. 2 <..1. 1 such that
(28) holds for any 0<..1.<A2 and XEO(X'\O(X*;<5tl; <5 2),

By Fwe denote the closed set [a, b]\[O(X*; <5d u O(X'\O(X*; Jd; <5 2)].

Then FnX,=FnXu =0 and

inf [p(x)-l(x)] >0,
xeF

inf [u(x)-p(x)] >0.
xeF

So there exists a positive number ..1.0 < A2 such that, when 0 < A< Ao (28)
holds for any x E F, and hence for any x E [a, b].

The lemma is established.

Before the end of this section, we give a new explanation for the order
of quasi-touch leX). If T~ rand l(r) < r, x E X", then for any q1, q2 E K, by
Lemma 2 we see that each x E X* is a zero of order at least l(X) of q1 - P
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and q2 - p, and consequently of ql - q2' And for x E X*, x is clearly a zero
of order at least t(x) of ql - q2 because t(x) = O. On the other hand, if we
let ql = P + ),qo EK, where qo satisfies the conditions of Lemma 5(i), and
q2 =p, then each x E X* is a zero of order t(x) of q 1 - q2 = ),qo. And for
each x E X* subject to qo (x) = 0, if in making qo in the proof of
Lemma 5(i) we shift this zero to the right or left slightly then we can get
qo satisfying the requirement of Lemma 5(i) with qo(x) 1= O. So there exist
ql, q2 E K such that x is a zero of order t(x) = 0 of ql - q2' Now we see that
t(x) is just the minimum of the order of the zero x of ql - q2 for all choices
of q\l q2 E K. Therefore, though t(x) was defined by the given generalized
polynomial p E K, in fact it is independent on the choice of p in K, but
depends only on the values of 1 and u.

4. PROOF OF CHARACTERIZAnON THEOREM

Proof of Characterization Theorem. First, based on the presumption
that (7) is false we see that u(x) has at most one value for any XE [a, b].
Next, it is easy to prove that X u X' u X" is compact. In fact, X and X" are
closed sets clearly. Provided ei E X~ , ei -+ X (i -+ (0), and x EX~, because
X, is closed and X~ = X, \ X*, therefore x E X* and there exists a f.J. such
that tl'._I(X)=TI'._I(X)= +00. So by (6) we see that XEX". Dealing with
the limit points of X~ similarly we can see that X' u X" is a compact set.

(i) => (ii) If (ii) is false, then by the Linear Inequality Theorem
(see [11, Chap. 1, Sect. 5) there exists a qoE If'such that

u(x) qg(x))(x) > 0, VXEXUX'UX". (30)

So from Lemma 5(ii) we can find a ),0> 0 such that p + ),qo E K for any
0<),<),0'

Since the failure of (7) implies X (') X* = 0, for any x E X we have
t(x) = 0, and by (30) it follows that

sgn qo(x) = sgn [f(x) - p(x)]. (31 )

Because X is closed, by the continuity of the functions we can find a (j > 0
such that both qo and f - p are sign-preserving in the (j-neighbourhood of
any XEX and

t]= inf Iqo(x)1 >0,
XE O(X; 0)

inf If(x)-p(x)I>O.
XEO(X;O)n.'f'
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So (31) holds for any x E O(X; <5) n,q" and there exists a positive number
Al ~ Ao such that

Al Iqo(x)1 < If(x) - p(x)l, \Ix E O(X; <5) n,q".

Therefore,

If(x)-p(x)-Aqo(x)1 = If(x)-p(x)I-A Iqo(x)1 ~ Ilf-pll-A'l

for any 0 < A~ Al and XE O(X; <5) n,q". Since on the compact set ,q"\O(x; <5)
we have If(x) - p(x)1 < II f - p II, then for sufficiently small A it follows that
If(x)-p(x)-Aqo(x)1 < Ilf-pil for any XE,q"\O(X;<5). Hence we get
II f - (p + Aqo)1I < II f - p II on the contrary.

(ii) => (iii) Assume that there exist at most m alternating points
Yl> ..., Ym of p with respect to fand I, u, but m ~ np ' Write Yo = a, Ym+ 1= b.
For i= 1, ..., m, let

Y;= inf Y,
ye Yj

Y;' = sup y.
ye Yj

It can be proved that

i = 1, ... , m - 1. (32)

It is sufficient to prove Y;' E Y j , Y; + IE Y j + I' because from this we can get
Y;'#Y;+I, and if Y;'>Y;+I then YI>·",Yj, Y;+I,Y;',Yj+I> ...,Ym are m+2
alternating points on the contrary. Choose a monotone increasing sequence
{ 'lj } c Y j such that 'lj -+ Y;' (j -+ (0). The compactness of X u X' u X"
implies Y;' E Xu X' u X". If Y;' E X", then there exists a positive integer J
such that for j > J it follows that

r('lj) = r(y;')

and {'lJ t2, J + I C X + u X, (or X _ u Xu). Since X + and X, (or X_and XJ
are both closed sets, we get

Thus Y;' E Y j. Provided Y;' E X", since X n X" = 0, then there exixts a J
such that {'lj}~J+IcX~ (or X~). Hence l_I.-I(Y;') (or l_I ..(Y;')) equals
+ 00, and by (6) we have

u(y;') = (_1)'(Y;) (or _(_1)'(Y;»).

So there exists a j so large that

( -1 fry;) u(y;') = (-1 )'(~j) ( -1 )'(Y;J u(y;') = ( -1 r(~j) u('l).

640/7l{2-7
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Thus we get y;'E Yi again. Similarly we can prove y;+IE Yi+ l • (32) is
established.

For i = 1, ..., m -1, if (y;' ,y;+ d n X* = 0, then let ~i = ~(y;' + y;+ d,
otherwise let ~i=~(y;'+min{Y:YE(y;',y;+dnX*}). By the assump
tions it follows that r: = m - 1+ LXE x. t(x) < n. Rewrite the points in
{ ~ i } 7'=-11 U X* as XI < ... < X b and let

t.={t(xJ ,
I 1,

if XEX*,

otherwise,
i= 1, ..., k.

Now (a) we make a q by Lemma 3 if (17) holds. (b) When (17) is false, it
might be provided that t l =r. Then we have t(a)=r and hence aEX*\X"
and a < Yl' So if we set up an additional single zero ~(a +y'd then q can
be made by Lemma 3. In both cases (8) holds for each t-fold zero x E (a, b),
and we can provide in addition that

If b E X U X' u X" we define additionally R(b) = ( - 1 )'(b) L(b). By the
definition of alternating points we have

R(yJ = (_l)r(y;)-r(Yl)+(i-l) R(yd = u(yJ

Because for any yE[y;,y;']n(XuX'uX") it follows that yEYi,
therefore

R(y) = (_1)'(y;)-r(y) R(yJ = u(y).

Since it is clear that

{
(y;', y;+dn (Xu X'u X") = 0 i= 1, ..., m-1,

{x: x <Yl} n (Xu X' u X"){x: x> y';"} n (Xu X' u X") = 0,

then we have

R(x) = u(x), VXEXUX'UX". (33)

When x E X U X', we have t( x) = 0 and from the construction of q we see
that q(x)#O. Hence

R(x) = sgn q(t(x»(x).

Since the above equality holds clearly for x EX", (33) implies that

u(x) q(t(x»(x) > 0, VXEXUX'UX".
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So by the Linear Inequality Theorem we see that (ii) is false on the
contrary.

(iii) => (i) Assume that Yl> ..., Yn +1 are alternating points. If there
p

exists p+qEKsuch that III-(p+q)1I < III-pll, then

and

a(x)q(x»O, 't/XEX,

min Iq(x)1 > O.
xeX

If ql is an generalized polynomial subject to the conditions in Lemma 5(i),
then qo = q + Aql satisfies

't/XEX (34)

for A> 0 sufficiently small. By Lemma 2, qo meets (19) and each x EX* is
a zero of order at least t(x) of qo. For i= 1, ..., np provided qo has just
r(Yi+d-r(Yi) zeros and no singular zero on (y;, Yi+l], we have

R(Yi+ I> qo) = (_l)T(Yi+tl-T(Yi) R(Yi' qo)

(provided R(b, qo) = ( -1 )/(b) L(b, qo». If Yi E X, then by (34) we get

R(Yi, qo) =sgn qo(yJ =a(yJ

And if YiE X' U X", by (19) we get

R(Yi, qo) = sgn q~(Y;)(YJ = a(yJ

Discussing Yi+l similarly we conclude from (35) that

a(Yi+ d = (_If(Yi+l)-T(Yi) a(Yi),

(35)

which contradicts the definition of the alternating points. So qo has at least
r(Yi+d-r(Yi)+ 1 zeros or one singular zero on each interval (Yi,Yi+l].
Then the sum of the numbers of the zeros and singular zeros is no less than

np + L t(x)=n
xeX·

which contradicts Lemma 4.

The theorem is proved.
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